Tutorial FFT 2D parallel (MPI)ΒΆ

In this tutorial, we present how to use fluidfft to perform 2D fft in parallel.

As in sequential, the first step would normally to benchmark the different methods for your case as explained in the page Benchmarking.

Because, we are doing this tutorial in parallel with jupyter and ipyparallel, we first need to create an ipyparallel client and create a direct view as explained here. We previously started an ipcluster with the command ipcluster start -n 4 --engines=MPIEngineSetLauncher. This is just a jupyter/ipython thing and it has nothing to do with fluidfft.

import ipyparallel as ipp
rc = ipp.Client()
dview = rc[:]

Afterwards, we will execute all cells in parallel so we always need to add the magic command %%px (see here)

%%px
from fluiddyn.util.mpi import rank, nb_proc
print("Hello world! I'm rank {}/{}".format(rank, nb_proc))
[stdout:0] Hello world! I'm rank 0/4
[stdout:1] Hello world! I'm rank 1/4
[stdout:2] Hello world! I'm rank 2/4
[stdout:3] Hello world! I'm rank 3/4

Then it is very similar as in sequential so we do not need to explain too much!

%%px
import numpy as np
from fluidfft.fft2d import methods_mpi
from fluidfft import import_fft_class
%%px
if rank == 0:
    print(methods_mpi)
[stdout:0] ['fft2d.mpi_with_fftwmpi2d', 'fft2d.mpi_with_fftw1d']
%%px
cls = import_fft_class('fft2d.mpi_with_fftw1d')
o = cls(48, 32)
%%px
_ = o.run_tests()
print(_)
[stdout:0] 1
[stdout:1] 1
[stdout:2] 1
[stdout:3] 1
%%px
times = o.run_benchs()
if rank == 0:
    print('t_fft = {} s; t_ifft = {} s'.format(*times))
[stdout:0] t_fft = 7.07e-05 s; t_ifft = 2.05e-05 s
%%px
print(o.get_is_transposed())
[stdout:0] True
[stdout:1] True
[stdout:2] True
[stdout:3] True
%%px
k0, k1 = o.get_k_adim_loc()
print('k0:', k0)
print('k1:', k1)
[stdout:0]
k0: [0 1 2 3]
k1: [  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17
  18  19  20  21  22  23  24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13
 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1]
[stdout:1]
k0: [4 5 6 7]
k1: [  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17
  18  19  20  21  22  23  24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13
 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1]
[stdout:2]
k0: [ 8  9 10 11]
k1: [  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17
  18  19  20  21  22  23  24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13
 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1]
[stdout:3]
k0: [12 13 14 15]
k1: [  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17
  18  19  20  21  22  23  24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13
 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1]
%%px
print(o.get_shapeX_loc())
print(o.get_shapeK_loc())
[stdout:0]
(12, 32)
(4, 48)
[stdout:1]
(12, 32)
(4, 48)
[stdout:2]
(12, 32)
(4, 48)
[stdout:3]
(12, 32)
(4, 48)
%%px
print(o.get_seq_indices_first_X())
[stdout:0] (0, 0)
[stdout:1] (12, 0)
[stdout:2] (24, 0)
[stdout:3] (36, 0)
%%px
print(o.get_seq_indices_first_K())
[stdout:0] (0, 0)
[stdout:1] (4, 0)
[stdout:2] (8, 0)
[stdout:3] (12, 0)
%%px
a = np.ones(o.get_shapeX_loc())
a_fft = o.fft(a)
%%px
a_fft = np.empty(o.get_shapeK_loc(), dtype=np.complex128)
o.fft_as_arg(a, a_fft)
%%px
o.ifft_as_arg(a_fft, a)
%%px
a = o.ifft(a_fft)